Exclusive gate coaching by IITIISc Graduates

IITIans GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com
Mail us:info@iitiansgateclasses.com

A division of PhIE Learning Center
GATE Computer Science Engineering Coaching by IGC
Disc Mathematics Assignment - 1
Q1. Indicate which of the following well - formed formula are valid :
a) $((P \Rightarrow Q) \wedge(Q \Rightarrow R)) \Rightarrow(P \Rightarrow R)$
b) $(P \Rightarrow Q) \Rightarrow(\neg P \Rightarrow \neg Q)$
c) $(P \wedge(\neg P \vee \neg Q)) \Rightarrow Q$
d) $((P \Rightarrow R) \vee(Q \Rightarrow R)) \Rightarrow((P \vee Q) \Rightarrow R)$

Q2. Which of the following is a tautology:-
a) $(a \vee b) \rightarrow(b \wedge c)$
b) $(a \wedge b) \rightarrow(b \vee c)$
c) $(a \vee b) \rightarrow(b \rightarrow c)$
d) $(\mathrm{a} \rightarrow \mathrm{b}) \rightarrow(\mathrm{b} \rightarrow \mathrm{c})$

Q3. The proposition $p \wedge(\sim p \vee q)$ is
a) A tautology
b) $\Leftrightarrow(p \wedge q)$
c) $\Leftrightarrow(p \vee q)$
d) A contradiction

Q4. What is the converse of the following assertion?
"I stay only if you go."
a) I stay if you go.
b) If I stay then you go.
c) If you do not go then I do not stay.
d) If I do not stay then you go.

Q5. Consider two well-formed formulas in propositional logic :-
$F_{1}: P \Rightarrow \neg P$

Exclusive gate coaching by ITtIISc Graduates
A division of PhIE Learning Center
$F_{2}:(P \Rightarrow \neg P) \vee(\neg P \Rightarrow P)$

Which of the following statements is correct?
a) F_{1} is satisfiable, F_{2} is valid.
b) F_{1} is unsatisfiable, F_{2} is satisfiable
c) F_{1} is unsatisfiable, F_{2} is valid
d) F_{1} and F_{2} are both satisfiable

Q6. "If X then Y unless Z " is represented by which of the following formulas in propositional logic?
(" \neg " is negation, " \wedge " is conjunction, and " \rightarrow " is implication)
a) $(X \wedge \neg Z) \rightarrow Y$
b) $(X \wedge Y) \rightarrow \neg Z$
c) $X \rightarrow(Y \wedge \neg Z)$
d) $(X \rightarrow Z) \wedge \neg Z$

Q7. Consider the following formula α and its two interpretations I_{1} and I_{2}.
$a:(\forall x)\left[P_{x} \Leftrightarrow(\forall y)\left[Q_{x y} \Leftrightarrow \neg Q_{y y}\right]\right] \Rightarrow(\forall x)\left[\neg P_{x}\right]$
I_{1} : Domain : the set of natural numbers
$P_{x}=$ ' x is a prime number'
$Q_{x y}=$ ' y divides x '
I_{2} : Same as I_{1} except that $P_{x}=$ ' x is a composite number'
Which of the following statements are true?
a) I_{1} satisfies α, I_{2} does not
b) l_{2} satisfies α, l_{1} does not
c) Neither I_{1} nor I_{2} satisfy a
d) Both I_{1} and I_{2} satisfy a

Q8. Consider the following logic program P

$$
\begin{aligned}
A(x) & \leftarrow B(x, y), C(y) \\
& \leftarrow B(x, x)
\end{aligned}
$$

A division of PhIE Learning Center
Which of the following first order sentences is equivalent to P ?
a) $(\forall x)(\exists y)[[B(x, y) \wedge C(y)] \Rightarrow A(x)] \wedge \neg(\exists x)[B(x, x)]$
b) $(\forall x)(\forall y)[[B(x, y) \wedge C(y)] \Rightarrow A(x)] \wedge \neg(\exists x)[B(x, x)]$
c) $(\forall x)(\exists y)[[B(x, y) \wedge C(y)] \Rightarrow A(x)] \vee \neg(\exists x)[B(x, x)]$
d) $(\forall x)(\forall y)[[B(x, y) \wedge C(y)] \Rightarrow A(x)] \vee \neg(\exists x)[B(x, x)]$

Q9. The following propositional statement is $(P \rightarrow(Q \vee R)) \rightarrow((P \wedge Q) \rightarrow R)$
a) Satisfiable but not valid
b) Valid
c) Contradiction
d) None of these

Q10. Which one of the first order predicate calculus statements given below correctly expresses the following english statement?
"Tigers and lions attack if they are hungry or threatened."
a) $(\forall x)[(\operatorname{tiger}(x) \wedge \operatorname{lion}(x)) \rightarrow\{($ hungry $(x) \vee$ threatened $(x)) \rightarrow \operatorname{attacks}(x)\}]$
b) $(\forall x)[(\operatorname{tiger}(x) \vee \operatorname{lion}(x)) \rightarrow\{($ hungry $(x) \vee$ threatened $(x)) \wedge$ attacks $(x)\}]$
c) $(\forall x)[(\operatorname{tiger}(x) \vee \operatorname{lion}(x)) \rightarrow\{($ hungry $(x) \vee$ threatened $(x)) \leftarrow \operatorname{attacks}(x)\}]$
d) $(\forall x)[(\operatorname{tiger}(x) \vee \operatorname{lion}(x)) \rightarrow\{($ hungry $(x) v$ threatened $(x)) \rightarrow$ attacks $(x)\}]$

Q11. Consider the following propositional statements :-
$P 1:-((A \wedge B) \rightarrow C)=((A \rightarrow C) \wedge(B \rightarrow C))$
$P 2:-((A \vee B) \rightarrow C)=((A \rightarrow C) \vee(B \rightarrow C))$

Which one of the following is true?
a) P1 is a tautology, but not P2
b) P 2 is a tautology, but not P1
c) P1 and P2 are both tautologies
d) Both P1 and P2 are not tautologies.

IITians GATE CLASSES BANGALORE
Visit us: www.iitiansgateclasses.com
Mail us:info@iitiansgateclasses.com

A division of PhIE Learning Center
Q12. Let $\operatorname{Graph}(\mathrm{x})$ be a predicate which denotes that x is a graph. Let Connected(x) be a predicate which denotes that x is connected. Which of the following first order logic sentences DOES NOT represent the statement: "Not every graph is connected." ?
a) $\neg \forall x(\operatorname{Graph}(x) \Rightarrow \operatorname{Connected}(x))$
b) $\exists x(\operatorname{Graph}(x) \wedge \neg$ Connected $(x))$
c) $\neg \forall x(\neg \operatorname{Graph}(\mathrm{x}) \mathrm{v}$ Connected(x))
d) $\forall x(\operatorname{Graph}(\mathrm{x}) \Rightarrow \neg \operatorname{Connected}(\mathrm{x}))$

Q13. Which of the following is TRUE about formulae in Conjunctive Normal Form ?
a) For any formula, there is a truth assignment for which at least half the clauses evaluate to true.
b) For any formula, there is a truth assignment for which all the clauses evaluate to true.
c) There is a formula such that for each truth assignment at most one-fourth of the clauses evaluate to true.
d) None of these.

Q14. P and Q are two propositions, which of the following logical expressions are equivalent?

1. $P \vee \neg Q$
2. $\neg(\neg P \wedge Q)$
3. $(P \wedge Q) \vee(P \wedge \neg Q) \vee(\neg P \wedge \neg Q)$
4. $(P \wedge Q) \vee(P \wedge \neg Q) \vee(\neg P \wedge Q)$
a) Only 1 and 2
b) Only 1, 2 and 3
c) Only 1, 2 and 4
d) All 1, 2, 3 and 4 .

Q15. Which one of the following is the most appropriate logical formula to represent the statement :
"Gold and silver ornaments are precious."

Exclusive gate coaching by IITIISc Graduates
A division of PhIE Learning Center
The following notations are used ：－
$G(x)$ ：x is a gold ornament．
$S(x)$ ：x is a silver ornament．
$P(x)$ ：x is precious．
a）$\forall x(P(x) \rightarrow(G(x) \wedge S(x)))$
b）$\forall x((G(x) \wedge S(x)) \rightarrow P(x))$
c）$\quad \exists x((G(x) \wedge S(x)) \rightarrow P(x))$
d）$\forall x((G(x) \vee S(x)) \rightarrow P(x))$

Q16．The binary operation \square is defined as follows ：－

P	Q	PaQ
T	T	T
T	F	T
F	T	F
F	F	T

Which one of the following is equivalent to $P \vee Q$ ？
a）$\neg Q ロ \neg P$
b）P ロ Q
c）$\neg P$ ロ Q
d）$\neg P \neg \neg Q$

Q17．Consider the following well－formed formulae ：－

1．$\neg \forall x(P(x))$
2．ᄀヨ $\mathrm{x}(\mathrm{P}(\mathrm{x}))$
3．$ᄀ \exists x(\neg P(x))$
4．$\exists \mathrm{x}(\neg \mathrm{P}(\mathrm{x}))$

Which of the above are equivalent？

A division of PhIE Learning Center
a) 1 and 3
b) 1 and 4
c) 2 and 3
d) 2 and 4

Q18. Consider the following logical inferences.
I_{1} : If it rains then the cricket match will not be played. The match was played. Inference :- There was no rain.
I_{2} : If it rains then the cricket match will not be played. It did not rain.
Inference :- The cricket match was played.
Which of the following is true ?
a) Both I_{1} and I_{2} are correct inferences.
b) l_{1} is correct but I_{2} is not a correct inference.
c) l_{1} is not correct but I_{2} is a correct inference.
d) Both I_{1} and I_{2} are not correct inferences.

Q19. What is the logical translation of the following statements ?
"None of my friends are perfect."
a) $\exists x(F(x) \wedge \neg P(x))$
b) $\exists x(\neg F(x) \wedge P(x))$
c) $\exists x(\neg F(x) \wedge \neg P(x))$
d) $\neg \exists x(F(x) \wedge P(x))$

Q20. Which of the following is NOT logically equivalent to $\neg \exists \mathrm{x}(\forall \mathrm{y}(\alpha) \wedge \forall \mathrm{z}(\beta))$
a) $\forall x(\exists z(\neg \beta) \rightarrow \forall y(\alpha))$
b) $\forall x(\forall z(\beta) \rightarrow \exists y(\neg \alpha))$
c) $\forall x(\forall y(\alpha) \rightarrow \exists z(\neg \beta))$
d) $\forall x(\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$

Exclusive Gate Coaching by IIT/IISc Graduates

IITIans GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

Answers :-

1. A
2. B
3. B
4. A
5. A
6. A
7. D
8. C
9. A
10. D
11. D
12. D
13. D
14. B
15. D
16. B
17. B
18. B
19. D
20. A,D
